organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis(benzimidazolium) naphthalene-1,5disulfonate trihydrate

Zi-Liang Wang,^a* Lin-Yu Jin^b and Lin-Heng Wei^c

^aInstitute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475001, People's Republic of China, ^bCollege of Chemistry and Chemical Engineering, Henan University, Kaifeng 475001, People's Republic of China, and ^cCollege of the Environment and Planning, Henan University, Kaifeng 475001, People's Republic of China Correspondence e-mail: zlwang@henu.edu.cn

Received 10 February 2008; accepted 3 March 2008

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.004 Å; R factor = 0.043; wR factor = 0.111; data-to-parameter ratio = 11.9.

The title compound, $2C_7H_7N_2^+ \cdot C_{10}H_6O_6S_2^{-2-} \cdot 3H_2O$, consists of two crystallographically independent benzimidazolium cations, two independent naphthalene-1,5-disulfonate dianions (both generated by inversion) and three water molecules. These components construct an infinite three-dimensional framework in the crystal structure *via* $O-H \cdot \cdot \cdot O$ and $N-H \cdot \cdot \cdot O$ hydrogen bonds.

Related literature

For related literature, see: Wang & Wei (2007).

Experimental

Crystal data $2C_7H_7N_2^+ \cdot C_{10}H_6O_6S_2^{-2-} \cdot 3H_2O$ $M_r = 578.61$

Triclinic, $P\overline{1}$ a = 8.372 (4) Å

b = 9.889(5) Å	
c = 17.044 (8) Å	
$\alpha = 80.914 \ (8)^{\circ}$	
$\beta = 87.557 \ (9)^{\circ}$	
$\gamma = 73.641 \ (8)^{\circ}$	
$V = 1337.0 (11) \text{ Å}^3$	

Data collection

6891 measured reflections
4670 independent reflections
3494 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.020$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.043$	H atoms treated by a mixture of
$vR(F^2) = 0.110$	independent and constrained
S = 1.06	refinement
4670 reflections	$\Delta \rho_{\rm max} = 0.30 \text{ e } \text{\AA}^{-3}$
392 parameters	$\Delta \rho_{\rm min} = -0.33 \ {\rm e} \ {\rm \AA}^{-3}$
37 restraints	

Z = 2

Mo $K\alpha$ radiation

 $\mu = 0.26 \text{ mm}^{-1}$

T = 296 (2) K $0.15 \times 0.12 \times 0.04 \text{ mm}$

Table 1		
Hydrogen-bond ge	eometry (Å, °).	

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1A \cdots O7^{i}$	0.898 (10)	1.820 (12)	2.708 (3)	170 (3)
$N2-H2A\cdots O4^{ii}$	0.887 (18)	1.885 (19)	2.762 (3)	170 (3)
N3-H3A···O3 ⁱⁱⁱ	0.895 (10)	1.937 (12)	2.812 (3)	166 (2)
$N4-H4A\cdots O8^{iv}$	0.899 (10)	1.883 (11)	2.771 (3)	169 (2)
$O7 - H7B \cdots O5^{v}$	0.852 (10)	2.169 (19)	2.839 (3)	135 (2)
$O8-H8A\cdots O2^{vi}$	0.844 (10)	1.982 (10)	2.826 (3)	178 (3)
$O7-H7A\cdots O1$	0.853 (10)	1.999 (12)	2.823 (3)	162 (3)
$O8-H8B\cdots O6$	0.847 (10)	1.963 (10)	2.809 (3)	176 (3)
$O9-H9B\cdotsO1^{iv}$	0.863 (10)	2.157 (18)	2.970 (3)	157 (3)

Symmetry codes: (i) x, y - 1, z + 1; (ii) x + 1, y, z + 1; (iii) x - 1, y, z; (iv) -x + 1, -y + 1, -z + 1; (v) x, y + 1, z; (vi) x, y - 1, z.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT-Plus* (Bruker, 2001); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2003); software used to prepare material for publication: *PLATON*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2700).

References

Bruker (2001). SAINT-Plus, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Wang, Z.-L. & Wei, L.-H. (2007). Acta Cryst. E63, 01448-01449.

Acta Cryst. (2008). E64, o674 [doi:10.1107/S1600536808005916]

Bis(benzimidazolium) naphthalene-1,5-disulfonate trihydrate

Z.-L. Wang, L.-Y. Jin and L.-H. Wei

Comment

This work continues our previous synthetic and structural studies of supramolecular interactions in aromatic molecular salts and adducts (Wang & Wei, 2007). Herein we report the structure of the title salt, (I).

The title compound (I) contains two independent benzimidazolium cations, two naphthalene-1,5-disulfonate dianions and three water molecules (Fig. 1). Each of the dianions occupies a special position on an inversion centre. Therefore, the asymmetric unit of the crystal structure is composed of two half naphthalene-1,5-disulfonate dianions, two benzimidazolium cations and three water molecules.

These ions and molecules are finally organized into an infinite three-dimensional framework through N—H…O and O—H…O hydrogen bonds (Fig. 2 and Table 1).

Experimental

A 5-ml ethanol solution of benzimidazole (1.00 mmol, 0.118 g) was added to an aqueous solution (25 ml) of naphthalene-1,5-disulfonic acid (0.50 mmol, 0.15 g). The mixture was stirred for 10 minutes at 373 K. The solution was filtered, and the filtrate was allowed to stand at room temperature. After several days, colourless blocks of (I) were recovered.

Refinement

The H atoms bonded to N and O were located in a difference map and refined with distance restraints [N—H = 0.90 (1) Å, water O—H = 0.85 (1)Å and H…H = 1.34 (1) Å]; their U_{iso} values were freely refined.

The C-bound H atoms were positioned geometrically (C—H = 0.93 Å) and refined as riding with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. The molecular structure of (I). Displacement ellipsoids for non-H atoms are drawn at the 30% probability level. Hydrogen bonds are shown as dashed lines. Unlabeled atoms in the C8 anion are related to labeled atoms by (1 - x, 1 - y, 1 - z). Unlabeled atoms in the C20 anion are related to labeled atoms by (1 - x, 1 - y, -z).

Fig. 2. The crystal packing of (I). Hydrogen bonds are shown as dashed lines. For clarity, H atoms not involved in hydrogen bonds are omitted.

Bis(benzimidazolium) naphthalene-1,5-disulfonate trihydrate

Crystal data

$2C_7H_7N_2^+ \cdot C_{10}H_6O_6S_2^{2-} \cdot 3H_2O$	Z = 2
$M_r = 578.61$	$F_{000} = 604$
Triclinic, <i>P</i> T	$D_{\rm x} = 1.437 {\rm ~Mg} {\rm ~m}^{-3}$
Hall symbol: -P 1	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 8.372 (4) Å	Cell parameters from 3010 reflections
b = 9.889(5) Å	$\theta = 2.5 - 28.2^{\circ}$
c = 17.044 (8) Å	$\mu = 0.26 \text{ mm}^{-1}$
$\alpha = 80.914 \ (8)^{\circ}$	T = 296 (2) K
$\beta = 87.557 \ (9)^{\circ}$	Block, colourless
$\gamma = 73.641 \ (8)^{\circ}$	$0.15 \times 0.12 \times 0.04 \text{ mm}$
$V = 1337.0 (11) \text{ Å}^3$	

Data collection

Bruker SMART APEX CCD diffractometer	4670 independent reflections
Radiation source: fine-focus sealed tube	3494 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.020$
T = 296(2) K	$\theta_{\text{max}} = 25.0^{\circ}$
ω scans	$\theta_{\min} = 2.2^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2001)	$h = -9 \rightarrow 6$
$T_{\min} = 0.962, \ T_{\max} = 0.990$	$k = -11 \rightarrow 10$
6891 measured reflections	$l = -20 \rightarrow 20$

Refinement

S = 1.06

37 restraints

methods

Refinement on F^2 Secondary atom site location: difference Fourier map Least-squares matrix: full Hydrogen site location: difmap and geom H atoms treated by a mixture of $R[F^2 > 2\sigma(F^2)] = 0.043$ independent and constrained refinement $w = 1/[\sigma^2(F_0^2) + (0.0559P)^2 + 0.0198P]$ $wR(F^2) = 0.110$ where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\text{max}} = 0.30 \text{ e} \text{ Å}^{-3}$ 4670 reflections $\Delta \rho_{\rm min} = -0.33 \ {\rm e} \ {\rm \AA}^{-3}$ 392 parameters Extinction correction: none Primary atom site location: structure-invariant direct

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F² against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F², conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
S1	0.75176 (8)	0.65881 (6)	0.37087 (4)	0.04129 (19)
S2	0.39100 (7)	0.25493 (6)	0.14588 (3)	0.03710 (17)
N1	0.8368 (3)	0.0653 (2)	1.09595 (14)	0.0502 (6)
H1A	0.794 (4)	-0.007 (2)	1.1155 (19)	0.098 (12)*
N2	0.9885 (3)	0.2131 (2)	1.08427 (15)	0.0505 (6)
H2A	1.065 (3)	0.253 (3)	1.0965 (18)	0.082 (11)*
N3	0.0749 (3)	0.7339 (2)	0.48285 (14)	0.0460 (5)
H3A	0.032 (3)	0.670 (2)	0.4660 (15)	0.063 (9)*
N4	0.1689 (3)	0.8418 (2)	0.56460 (12)	0.0432 (5)
H4A	0.192 (3)	0.865 (3)	0.6108 (9)	0.056 (8)*
01	0.7659 (2)	0.65613 (18)	0.28505 (10)	0.0554 (5)
O2	0.6945 (2)	0.80262 (17)	0.39064 (11)	0.0571 (5)
O3	0.9056 (2)	0.57458 (17)	0.41288 (10)	0.0473 (4)
O4	0.21223 (19)	0.33257 (17)	0.14166 (10)	0.0457 (4)
O5	0.4281 (2)	0.13448 (16)	0.10230 (10)	0.0490 (5)
O6	0.4518 (2)	0.21705 (18)	0.22760 (10)	0.0545 (5)
07	0.6702 (3)	0.8721 (2)	0.15255 (12)	0.0636 (6)

H7A	0.695 (3)	0.822 (3)	0.1982 (9)	0.072 (5)*
H7B	0.575 (2)	0.928 (3)	0.1601 (16)	0.096 (14)*
08	0.7493 (3)	0.0547 (2)	0.30528 (12)	0.0573 (5)
H8A	0.733 (3)	-0.0213 (17)	0.3299 (15)	0.067 (5)*
H8B	0.657 (2)	0.102 (3)	0.283 (2)	0.130 (17)*
09	0.0253 (4)	0.6345 (3)	0.73328 (16)	0.0971 (8)
H9A	-0.066 (2)	0.618 (3)	0.719 (2)	0.081 (5)*
H9B	0.089 (3)	0.5484 (16)	0.743 (2)	0.101 (6)*
C1	0.9359 (3)	0.1177 (3)	1.13375 (17)	0.0546 (7)
H1	0.9641	0.0912	1.1873	0.065*
C2	0.8228 (3)	0.1305 (2)	1.01695 (16)	0.0421 (6)
C3	0.7326 (3)	0.1173 (3)	0.95341 (18)	0.0548 (7)
Н3	0.6675	0.0541	0.9585	0.066*
C4	0.7446 (4)	0.2034 (3)	0.88195 (18)	0.0619 (8)
H4	0.6861	0.1975	0.8380	0.074*
C5	0.8424 (4)	0.2990 (3)	0.87418 (18)	0.0626 (8)
H5	0.8468	0.3547	0.8252	0.075*
C6	0.9320 (3)	0.3128 (3)	0.93678 (17)	0.0532 (7)
H6	0.9967	0.3763	0.9314	0.064*
C7	0.9205 (3)	0.2262 (2)	1.00908 (16)	0.0428 (6)
C8	0.4007 (3)	0.4475 (3)	0.37232 (15)	0.0514 (7)
H8	0.3477	0.4186	0.3338	0.062*
C9	0.5171 (3)	0.5243 (3)	0.34934 (15)	0.0455 (6)
Н9	0.5410	0.5452	0.2957	0.055*
C10	0.5963 (3)	0.5689 (2)	0.40503 (13)	0.0360 (5)
C11	0.5595 (3)	0.5398 (2)	0.48859 (13)	0.0348 (5)
C12	0.6357 (3)	0.5851 (3)	0.54888 (14)	0.0442 (6)
H12	0.7114	0.6378	0.5346	0.053*
C13	0.0892 (3)	0.7450 (3)	0.55844 (16)	0.0478 (7)
H13	0.0493	0.6927	0.6011	0.057*
C14	0.1487 (3)	0.8290 (2)	0.43592 (14)	0.0392 (6)
C15	0.1657 (3)	0.8615 (3)	0.35337 (16)	0.0541 (7)
H15	0.1264	0.8154	0.3181	0.065*
C16	0.2444 (4)	0.9660 (3)	0.32755 (17)	0.0620 (8)
H16	0.2584	0.9907	0.2733	0.074*
C17	0.3036 (3)	1.0360 (3)	0.38033 (18)	0.0578 (8)
H17	0.3552	1.1060	0.3601	0.069*
C18	0.2877 (3)	1.0043 (3)	0.46113 (16)	0.0477 (6)
H18	0.3274	1.0507	0.4960	0.057*
C19	0.2086 (3)	0.8982 (2)	0.48839 (14)	0.0369 (6)
C20	0.6767 (3)	0.5287 (2)	0.11047 (14)	0.0394 (6)
H20	0.7486	0.5548	0.1414	0.047*
C21	0.6018 (3)	0.4208 (2)	0.14309 (13)	0.0357 (5)
H21	0.6249	0.3764	0.1953	0.043*
C22	0.4946 (3)	0.3809 (2)	0.09785 (13)	0.0308 (5)
C23	0.4614 (3)	0.4453 (2)	0.01605 (12)	0.0288 (5)
C24	0.3560 (3)	0.4050 (2)	-0.03388 (13)	0.0353 (5)
H24	0.3084	0.3323	-0.0139	0.042*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0484 (4)	0.0338 (3)	0.0428 (4)	-0.0151 (3)	-0.0003 (3)	-0.0022 (3)
S2	0.0385 (4)	0.0360 (3)	0.0376 (3)	-0.0162 (3)	0.0002 (3)	0.0027 (3)
N1	0.0443 (13)	0.0410 (13)	0.0639 (16)	-0.0139 (11)	0.0030 (11)	-0.0011 (11)
N2	0.0383 (13)	0.0498 (14)	0.0660 (16)	-0.0161 (11)	-0.0060 (11)	-0.0082 (12)
N3	0.0469 (13)	0.0372 (12)	0.0571 (15)	-0.0157 (10)	-0.0011 (11)	-0.0087 (11)
N4	0.0488 (13)	0.0396 (12)	0.0397 (13)	-0.0117 (10)	-0.0042 (10)	-0.0018 (10)
01	0.0689 (13)	0.0589 (12)	0.0399 (10)	-0.0246 (10)	0.0042 (9)	-0.0003 (9)
02	0.0714 (13)	0.0312 (9)	0.0693 (13)	-0.0159 (9)	0.0042 (10)	-0.0072 (9)
03	0.0444 (10)	0.0422 (10)	0.0567 (11)	-0.0170 (8)	-0.0044 (8)	-0.0020 (8)
04	0.0346 (10)	0.0478 (10)	0.0541 (11)	-0.0140 (8)	0.0058 (8)	-0.0033 (8)
05	0.0555 (11)	0.0317 (9)	0.0634 (12)	-0.0180 (8)	0.0009 (9)	-0.0069 (8)
O6	0.0642 (12)	0.0609 (12)	0.0395 (10)	-0.0306 (10)	-0.0067 (9)	0.0153 (8)
07	0.0655 (15)	0.0497 (13)	0.0740 (15)	-0.0202 (12)	-0.0078 (11)	0.0045 (10)
08	0.0676 (14)	0.0493 (12)	0.0582 (13)	-0.0246 (11)	-0.0130 (11)	0.0009 (10)
09	0.109 (2)	0.0876 (17)	0.0720 (16)	0.0001 (16)	0.0210 (16)	-0.0007 (14)
C1	0.0467 (17)	0.0544 (17)	0.0579 (18)	-0.0094 (14)	-0.0031 (14)	-0.0022 (14)
C2	0.0341 (14)	0.0358 (14)	0.0562 (17)	-0.0083 (11)	0.0035 (12)	-0.0099 (12)
C3	0.0445 (16)	0.0523 (17)	0.074 (2)	-0.0178 (13)	0.0072 (14)	-0.0234 (15)
C4	0.0578 (19)	0.069 (2)	0.061 (2)	-0.0145 (16)	-0.0041 (15)	-0.0214 (16)
C5	0.065 (2)	0.0580 (19)	0.0579 (19)	-0.0107 (16)	0.0059 (16)	-0.0032 (15)
C6	0.0507 (17)	0.0434 (15)	0.0679 (19)	-0.0184 (13)	0.0076 (15)	-0.0078 (14)
C7	0.0331 (14)	0.0369 (14)	0.0585 (17)	-0.0084 (11)	0.0032 (12)	-0.0112 (12)
C8	0.0587 (17)	0.0617 (17)	0.0434 (16)	-0.0275 (15)	-0.0076 (13)	-0.0147 (13)
C9	0.0541 (16)	0.0511 (15)	0.0341 (13)	-0.0175 (13)	-0.0024 (12)	-0.0087 (12)
C10	0.0384 (14)	0.0325 (12)	0.0363 (13)	-0.0083 (10)	-0.0013 (11)	-0.0054 (10)
C11	0.0360 (13)	0.0296 (12)	0.0400 (13)	-0.0095 (10)	-0.0027 (10)	-0.0074 (10)
C12	0.0474 (15)	0.0487 (15)	0.0441 (15)	-0.0229 (13)	-0.0004 (12)	-0.0118 (12)
C13	0.0498 (16)	0.0364 (14)	0.0532 (17)	-0.0104 (12)	0.0041 (13)	0.0014 (12)
C14	0.0350 (13)	0.0358 (13)	0.0450 (15)	-0.0080 (11)	0.0009 (11)	-0.0047 (11)
C15	0.0566 (18)	0.0572 (17)	0.0471 (16)	-0.0108 (14)	-0.0004 (13)	-0.0130 (13)
C16	0.067 (2)	0.068 (2)	0.0452 (17)	-0.0154 (17)	0.0105 (15)	-0.0002 (15)
C17	0.0546 (18)	0.0537 (17)	0.0628 (19)	-0.0193 (15)	0.0120 (15)	0.0027 (15)
C18	0.0410 (15)	0.0443 (15)	0.0606 (18)	-0.0165 (12)	0.0006 (13)	-0.0074 (13)
C19	0.0326 (13)	0.0336 (13)	0.0413 (14)	-0.0058 (11)	-0.0028 (11)	-0.0020 (11)
C20	0.0410 (14)	0.0432 (14)	0.0399 (14)	-0.0193 (12)	-0.0071 (11)	-0.0076 (11)
C21	0.0407 (14)	0.0372 (13)	0.0294 (12)	-0.0121 (11)	-0.0022 (10)	-0.0030 (10)
C22	0.0314 (12)	0.0278 (12)	0.0329 (12)	-0.0079 (10)	0.0016 (10)	-0.0045 (9)
C23	0.0276 (12)	0.0273 (12)	0.0319 (12)	-0.0078 (9)	0.0037 (10)	-0.0062 (10)
C24	0.0381 (13)	0.0343 (13)	0.0379 (13)	-0.0185 (11)	-0.0001(10)	-0.0030 (10)

Geometric parameters (Å, °)

S1—O2	1.4558 (18)	С5—Н5	0.9300
S1—O1	1.4663 (19)	C6—C7	1.402 (4)
S1—O3	1.4665 (18)	С6—Н6	0.9300

S1—C10	1.802 (2)	C8—C12 ⁱ	1.373 (3)
82—05	1.4555 (18)	C8—C9	1.404 (3)
S2—O6	1.4586 (18)	C8—H8	0.9300
82—04	1.4761 (18)	C9—C10	1.373 (3)
S2—C22	1.789 (2)	С9—Н9	0.9300
N1—C1	1.329 (3)	C10-C11	1.445 (3)
N1—C2	1.393 (3)	C11—C12	1.423 (3)
N1—H1A	0.898 (10)	C11—C11 ⁱ	1.442 (4)
N2—C1	1.322 (3)	C12—C8 ⁱ	1.373 (3)
N2—C7	1.397 (3)	C12—H12	0.9300
N2—H2A	0.887 (18)	С13—Н13	0.9300
N3—C13	1.323 (3)	C14—C19	1.394 (3)
N3—C14	1.398 (3)	C14—C15	1.403 (3)
N3—H3A	0.895 (10)	C15—C16	1.382 (4)
N4—C13	1.330 (3)	C15—H15	0.9300
N4—C19	1.396 (3)	C16—C17	1.401 (4)
N4—H4A	0.899 (10)	C16—H16	0.9300
O7—H7A	0.853 (10)	C17—C18	1.373 (4)
O7—H7B	0.852 (10)	C17—H17	0.9300
O8—H8A	0.844 (10)	C18—C19	1.402 (3)
O8—H8B	0.847 (10)	C18—H18	0.9300
O9—H9A	0.871 (10)	C20—C24 ⁱⁱ	1.367 (3)
О9—Н9В	0.863 (10)	C20—C21	1.414 (3)
C1—H1	0.9300	C20—H20	0.9300
C2—C3	1.389 (4)	C21—C22	1.382 (3)
C2—C7	1.403 (3)	C21—H21	0.9300
C3—C4	1.389 (4)	C22—C23	1.442 (3)
С3—Н3	0.9300	C23—C24	1.425 (3)
C4—C5	1.403 (4)	C23—C23 ⁱⁱ	1.436 (4)
C4—H4	0.9300	C24—C20 ⁱⁱ	1.367 (3)
C5—C6	1.375 (4)	C24—H24	0.9300
O2—S1—O1	113.02 (11)	С9—С8—Н8	119.7
O2—S1—O3	112.36 (11)	C10—C9—C8	120.8 (2)
O1—S1—O3	111.76 (11)	С10—С9—Н9	119.6
O2—S1—C10	107.58 (11)	С8—С9—Н9	119.6
O1—S1—C10	105.71 (11)	C9—C10—C11	120.7 (2)
O3—S1—C10	105.83 (10)	C9—C10—S1	117.92 (18)
O5—S2—O6	113.58 (11)	C11—C10—S1	121.33 (17)
O5—S2—O4	111.49 (10)	C12—C11—C11 ⁱ	118.8 (3)
O6—S2—O4	111.78 (11)	C12-C11-C10	123.3 (2)
O5—S2—C22	108.32 (10)	C11 ⁱ —C11—C10	117.9 (3)
O6—S2—C22	106.06 (10)	C8 ⁱ —C12—C11	121.2 (2)
O4—S2—C22	105.02 (10)	C8 ⁱ —C12—H12	119.4
C1—N1—C2	108.7 (2)	C11—C12—H12	119.4
C1—N1—H1A	127 (2)	N3—C13—N4	110.2 (2)
C2—N1—H1A	124 (2)	N3—C13—H13	124.9
C1—N2—C7	109.1 (2)	N4	124.9

C1—N2—H2A	124 (2)	C19—C14—N3	106.2 (2)			
C7—N2—H2A	126 (2)	C19—C14—C15	121.6 (2)			
C13—N3—C14	108.8 (2)	N3—C14—C15	132.2 (2)			
C13—N3—H3A	124.4 (18)	C16—C15—C14	116.0 (3)			
C14—N3—H3A	126.6 (18)	С16—С15—Н15	122.0			
C13—N4—C19	108.6 (2)	C14—C15—H15	122.0			
C13—N4—H4A	124.5 (17)	C15—C16—C17	122.3 (3)			
C19—N4—H4A	126.9 (17)	C15—C16—H16	118.9			
H7A—O7—H7B	103.0 (15)	C17—C16—H16	118.9			
H8A—O8—H8B	105.6 (15)	C18—C17—C16	121.9 (3)			
H9A—O9—H9B	100.1 (14)	C18—C17—H17	119.1			
N2—C1—N1	110.2 (3)	С16—С17—Н17	119.1			
N2—C1—H1	124.9	C17—C18—C19	116.6 (3)			
N1—C1—H1	124.9	C17-C18-H18	121.7			
C3—C2—N1	132.0 (2)	C19—C18—H18	121.7			
C3—C2—C7	121.6 (2)	C14—C19—N4	106.3 (2)			
N1—C2—C7	106.4 (2)	C14—C19—C18	121.6 (2)			
C4—C3—C2	116.5 (3)	N4—C19—C18	132.1 (2)			
C4—C3—H3	121.8	C24 ⁱⁱ —C20—C21	120.5 (2)			
С2—С3—Н3	121.8	C24 ⁱⁱ —C20—H20	119.7			
C3—C4—C5	121.9 (3)	C21—C20—H20	119.7			
С3—С4—Н4	119.1	C22—C21—C20	120.4 (2)			
С5—С4—Н4	119.1	C22—C21—H21	119.8			
C6—C5—C4	122.0 (3)	C20-C21-H21	119.8			
С6—С5—Н5	119.0	C21—C22—C23	120.6 (2)			
С4—С5—Н5	119.0	C21—C22—S2	117.66 (17)			
C5—C6—C7	116.4 (3)	C23—C22—S2	121.65 (16)			
С5—С6—Н6	121.8	C24—C23—C23 ⁱⁱ	118.9 (2)			
С7—С6—Н6	121.8	C24—C23—C22	122.86 (19)			
N2—C7—C6	132.7 (2)	C23 ⁱⁱ —C23—C22	118.2 (2)			
N2—C7—C2	105.7 (2)	C20 ⁱⁱ —C24—C23	121.3 (2)			
C6—C7—C2	121.6 (3)	C20 ⁱⁱ —C24—H24	119.3			
C12 ⁱ —C8—C9	120.6 (2)	С23—С24—Н24	119.3			
C12 ⁱ —C8—H8	119.7					
Symmetry codes: (i) $-x+1$, $-y+1$, $-z+1$; (ii) $-x+1$, $-y+1$, $-z$.						

Hydrogen-bond geometry	(Å,	9)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N1—H1A···O7 ⁱⁱⁱ	0.898 (10)	1.820 (12)	2.708 (3)	170 (3)
N2—H2A····O4 ^{iv}	0.887 (18)	1.885 (19)	2.762 (3)	170 (3)
N3—H3A···O3 ^v	0.895 (10)	1.937 (12)	2.812 (3)	166 (2)
N4—H4A···O8 ⁱ	0.899 (10)	1.883 (11)	2.771 (3)	169 (2)
O7—H7B···O5 ^{vi}	0.852 (10)	2.169 (19)	2.839 (3)	135 (2)
O8—H8A···O2 ^{vii}	0.844 (10)	1.982 (10)	2.826 (3)	178 (3)
O7—H7A…O1	0.853 (10)	1.999 (12)	2.823 (3)	162 (3)

O8—H8B…O6	0.847 (10)	1.963 (10)	2.809 (3)	176 (3)	
O9—H9B…O1 ⁱ	0.863 (10)	2.157 (18)	2.970 (3)	157 (3)	
Symmetry codes: (iii) $x, y-1, z+1$; (iv) $x+1, y, z+1$; (v) $x-1, y, z$; (i) $-x+1, -y+1, -z+1$; (vi) $x, y+1, z$; (vii) $x, y-1, z$.					

Fig. 2

